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A Method for Deriving Tone Noise Information from CFD Calculatmns
on the Aeroengme Fan Stage

A.G. Wilson
Rolls-Royce plc
ML 81
- P.O. Box 31, Moor Lane
Derby, DE24 8BJ
United Kingdom

Abstract ' -

A wavesphttlng procedure is proposed by which noise information can be derived from CFD calculations
on the aeroengine fan stage. Noise propagation in the ducted regions is compared with well-understood
linear behaviour in parallel wall ducts. Deviations from this behaviour are used to highlight important
features of the flow solution. These include genuine flow features such as non-linear acoustic interaction
as well as dissipation and boundary condition errors deriving from the numerical solution of the equations.
Properly. applied, the method provides quantitative noise source amplitudes, accounting for (modest)
reflections from the boundaries of the CFD domain. At the same time confidence can be gained that the
CFD results are accurate for the wavelengths and frequencies being analysed, and that the CFD domain
sufficiently covers the region of interest.

Examples are given of how the method can be apphed to steady and‘unsteady CFD calculations.
Limitations of the method are also discussed. : -

Introduction

Wavesplitting (decomposition of a flow field into upstream and downstream travelling eigenmodes) is
widely used in CFD boundary conditions to determine the direction in which information is travelling, and
hence to prevent spurious reflections at the boundaries of the domain. Tyler and Sofrin (1961) first
derived the acoustic modes for uniform axial flow in cylindrical and annular ducts. This formulation has
been widely and successfully applied to boundary conditions: Giles, for example, used the modes with
varying levels of approximation to produce 1D and 2D non-reflecting conditions (Giles 1990, Saxer and
Giles 1993). Other authors have proposed a complete 3D formulation. The method has, however, clear
limitations. Ducts are not in general parallel annulus. Flow is generally non-uniform radially. Amplitudes
(particularly with regard to rotor alone tones) are so high that the acoustic perturbations behave non-
linearly (Morfey and Fisher 1970). Moreover, in addition to these physical features, CFD solutions have
their own characteristics: smoothing, grid and boundary conditions all affect the noise prediction process.
- Rowley and Colonius (1998) developed numerically non-reﬂecting boundary conditions by calculating
linear modes using the true mean flow proﬂle and included in their analysis the discretisation of the
particular CFD code being used. - - -

In this paper a wavesplitting method is developed for use inside the computational domain, as an aid to
deriving tone noise information from the CFD solution. As with the boundary conditions, a decision has to
be made as to the complexity required. 1D and 2D analyses are insufficient for the general case. Instead a
3D uniform axial flow method based on Tyler and Sofrin modes is adopted. This has many advantages
over more complex methods: '

e The modes can be calculated quickly using standard Bessel functions.

* The modes are orthogonal, making decomposition easier and faster.

e The behaviour of the Tyler and Sofrin modes is well understood.

o The resulting wavesplitting routines are general across all CFD codes.
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Two methods are given for splitting the flow field at a given axial plane into Tyler and Sofrin modes,
depending on whether or not vortical as well as acoustic waves are present in the flow. The output of each
method is a number representing amplitude and phase for the upstream and downstream travelling acoustic
waves at each circumferential and radial harmonic.

Tyler and Sofrin modes propagate either at constant amplitude (cut-on waves) or with log amplitude
varying linearly with axial distance (cut-off waves). In both cases the phase varies linearly with distance.
The axial wavenumber, representing the rate of change of amplitude and phase, can be calculated
analytically from the circumferential wavenumber, the wave frequency and the (axial) Mach number of the
mean flow (appendix 1). Because the Tyler and Sofrin modes do not agree exactly with either the physical
or the CFD calculated modes (for the reasons outlined above), the behaviour of the calculated wave
amplitude varies from this ‘ideal’. By plotting log amplitude and phase against axial distance it is possible
to isolate these regions, and hence to direct further work at establishing whether the cause of the
discrepancy is physical (eg non-linearity, hade angle, non-uniform mean flow) or numerical (eg dissipation
error, reflections from the boundaries). This has proved an essential step in obtaining reliable noise
information, and the examples below show how the analysis might proceed from the basic method to
derive quantitative estimates of source noise.

Example 1: Steady CFD, Boundary Conditions, Non-linear effects

Before describing the mechanics of the method it is useful to consider an example to illustrate the
progression of thought. Fig 1 shows the result of a steady CFD calculation of a research fan blade at rig
scale, aimed at predicting fan-forward rotor alone noise. The pressure has been Fourier transformed
circumferentially to decompose it into the harmonics of blade passing frequency that would be detected by
a stationary microphone at the outer wall. The signal amplitude at the first blade passing harmonic is
plotted on a log scale (in fact, as Sound Pressure Level, SPL') against distance upstream of the fan tip
leading edge. The large oscillations in amplitude are known from measurements to be false.
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Figure 1. Steady CFD Solution for Fan Rotor Alone Noise; SPL on Outer Wall

! Sound Pressure Level (SPL) is defined in the usual way as 20logo(Prms/ 2.10°Pa)
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The starting strength close to the fan is known to be roughly cormrect, but the signal (if genuine) is
contaminated by oscillations in the solution, making it hard to quantify the noise produced. Two
lengthscales can be distinguished; a short wavelength oscillation with about eleven peaks over the axial
domain, and a longer wavelength oscillation with troughs at x=0.5 and x=0.3.

The first step in the analysis procedure is to split the pressure signal into Bessel-Fourier harmomcs It will
be seen later that over the majority of the domain the first radial harmonic dominates the signal at the outer
wall. This harmonic is shown as the long dashes in fig 2, compared to the outer wall values from fig 1.
The longer lengthscale oscillation has disappeared, leaving a smoothly varying version of the shorter
wavelength disturbance. Thus the longer wavelength disturbance was due to interference at the outer wall
between different radial harmonics. ’
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Figure 2. Steady CFD for Rotor Alohe_Ndise, Bessel-Fourier Decomposition'and Wavesplitting

In some cases this level of analysis is sufficient. The radial harmonic breakdown along the_duct gives a
great deal of information about both the source amplitude and the accuracy of the code, as will be
discussed later. In this case, however, a further step is necessary to isolate the cause of the short
wavelength oscillations. The periodic nature of the oscillations suggests some form of standing wave, and
this particular case was run with 1D non-reflecting boundary conditions at the inlet boundary, which are
known to be poor for the wavelengths and frequencies of interest.

By decomposing the axial velocity also into Bessel-Fourier harmonics the pressure variation represented
by the long dashes in fig 2 can be split into forward and backward travelling components. The short
dashes in that figure represent’ the upstream travelling component. The result is a’ smooth line,
demonstrating that the oscillations observed at the outer wall are indeed due to the presence of a
downstream wave reflected from the inlet boundary.
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Figure 3. Steady CFD for Rotor Alone Noise: First Three Radial Harmonics of Upstream and
Downstream Waves ‘

Figure 3 shows upstream and downstream wave components of the noise for the first three radial
harmonics at the first blade passing frequency. The third harmonic is cut-off and will be discussed later.
The first two harmonics are cut-on, and Tyler and Sofrin’s linear method would predict propagation at
constant amplitude. The upstream waves, however, decay considerably, especially in the vicinity of the
fan. Fig 4 shows the first radial harmonic, compared with Morfey and Fisher’s 1D non-linear decay theory
(Morfey and Fisher 1970). The agreement is not expected to be exact, given the assumptions implicit in
the 1D calculation. However, the relatively close agreement near the fan suggests that the decay is in the
main genuine and due to non-linear effects. The less good agreement further from the fan is thought to be
due to the increasingly coarse grid away from the fan, which has the effect of attenuating the higher
circumferential harmonics.
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Figure 4. Steady CFD for Rotor Alone Noise, Comparison of First Radial Harmonic with Morfey-
Fisher 1D Non-linear Decay Theory

The downstream travelling waves (dashed lines in fig 3) are lower amplitude and are less affected by non-
linear decay. Hence they travel at more nearly constant amplitude over the majority of the domain. The
high ratio of reflected to incident amplitude at the inlet to the domain confirms that the boundary
conditions are indeed behaving poorly. The upstream wave amplitude, however, allows a quantitative
noise estimate to be obtained without contamination from these reflected waves, provided that the response
of the fan to the downstream: waves can be ignored. In this particular case the non-linear decay is
sufficient to mask any minor changes in source amplitude, and the result is unlikely to be affected by the -
presence of the reflected waves.

The oscillations in amplitude of the reflected waves near the fan leading edge are a result of the
assumptions in the mathematics of the wavesplitting. The relationship between pressure and velocity as
calculated by the CFD code are slightly different to the analytic values, due to discretisation effects and the
assumptions inherent in the analysis. Hence there is a limit te the extent to which upstream and
downstream waves can be discriminated. This can be a particular problem near the cut-off boundary, as
explained uiiderexample 2. The results in figure 3 show that upstream and downstream waves of this type
can be discriminated to within 15-20dB of the higher signal amplitude. ~ '

The third harmonic shown in figure 3 is cut-off, and decays rapidly with axial distance to a ‘floor’ level of
around 110dB. This floor level is set by ‘leakage’ between radial harmonics. The actual propagating
modes in the calculation are not pure Bessel-Fourier harmonics, both because of discretisation effects and
because the mean flow is not uniform. Hence the Bessel-Fourier breakdown in the wavesplitting process
calculates some content at all radial harmonics even if only one mode is present. Nonetheless, the
discrimination between radial modes (over 40dB from the first harmonic amplitude to the ‘floor’ level in
fig 3) is more than sufficient for most purposes.

The reason for the poor discrimination between upstream and downstream waves near the domain exit at
this third harmonic is not known. Typically (away from the cut-off point itself) reasonable discrimination
is obtained for both cut-on and cut-off waves.

Figure 5 shows the amplitude of the upstream component of the third harmonic cornpares well with the
exponential decay predicted in Tyler and Sofrin’s theory.
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Figure 5. Steady CFD for Rotor Alone Noise, Comparison of Third Radial Harmonic Upstream
Travelling Wave with Linear Theory

The noise output of the fan can only be estimated in the region where the mesh is sufficiently fine. In this

case, the noise output (fig 3) is 163dB SPL in the first radial harmonic, 152dB in the second, and

negligible output in the third and higher harmonics, all at a position 0.2 diameters upstream of the fan.

Note that this figure could not easily have been obtained from either the wall pressure or the harmonic

breakdown of pressure alone (fig 2).

Figure 4 suggests that there is still significant non-linear behaviour upstream of the 0.2m point. Dependmg

on the use to which the data is to be put, it may be important to contain the non-linear behaviour within the

CFD domain. In this case a second CFD calculation would be required with increased mesh density in the

upstream region.

To summarise, in this first example the wavesplitting method has been used

s to demonstrate that the observed oscillations in pressure are due to reflections from the inlet boundary
and interference between radial harmonics, 4 -

e to match the behaviour of the CFD solutlon to expectation and hence to give confidence in the

solution,

to gauge the significance of non-linear effects, and

to obtain a quantitative measure of the fan-forward rotor alone noise in the presence of significant

reflections from the upstream plane.

Method

The post-processing required for the wavesplitting method can be broken down into the following steps:
1. Fourier transform in time (non-linear unsteady CFD codes only).

2. Interpolate onto axial planes.

3. Decompose into Bessel-Fourier harmonics.

4. Calculate linear propagation parameters at each axial plane based on average mean flow.

5. Use linear theory to split Bessel-Fourier harmonics into upstream and downstream components.

It can be useful, in comparing the relative strengths of the radial harmonics, to add a sixth step:

6. Calculate acoustic energy flux for upstream and downstream components.



(SYA) 3-7

In linear theory with uniform axial mean flow and parallel annulus ducts (Tyler and Sofrin 1961), cut-on
modes propagate with uniform amplitude and cut-off modes with exponential decay. Both types propagate
with phase varying linearly with axial distance. The decay rates and axial wavenumber are calculated at
step 4, and so by plotting amplitude on a log scale (eg as SPL) and phase on a linear scale, it is easy to
compare the modal behaviour with theory. Variations from linear behaviour can then be easily identified
and subjected to further analysis, as demonstrated in the examples above and below.
Step 1. Fourier transform in time.-
Both the theoretical linear calculations and the wavesplitting require data at ﬁxed position and fixed
frequency. In steady CFD calculations on rotor blades the frequency is fixed by the circumferential
- harmonic (that is, a first blade passing harmonic in the circumferential direction will be heard at first blade
passing frequency by a stationary observer). In linear unsteady calculations the frequency is fixed in the
frame of reference of the CFD domain, and again the frequency in the stationary domain can be easﬂy
calculated for a given circumferential harmonic. In non-linear calculations a Fourier transform in time is
required first to obtain data at a given frequency. Such a transform is easily calculated given a periodic
converged solution.
Step 2. Interpolate onto axial planes.
Some care is requiréd in this step, particularly in the presence of shocks, where. a simple llnear
interpolation can lead to shock smoothing. In cases with structured or semi-structured grids, greater
accuracy can sometimes be obtained by applying a circumferential FFT first (that is, to bring the first part
of step 3 forward), and then to interpolate axially for amplitude and phase at a given plane.
Step 3. Decompose into Bessel-Fourier harmonics.
This process consists of a Fourier transform cucumferennally, followed by a Bessel function
decomposition in the radial direction. The latter is aided by the orthogonality condition (appendix 1). The
choice of flow variables to be decomposed depends on the type of wavesphttmg technique to be employed
as described under step 5.
Step 4. Calculate linear propagation parameters at each axial plane based on average mean ﬂow
The linear propagation parameters (axial wavenumbers for upstream and downstream propagating waves)
are calculated for each circumferential and radial harmonic, based on a duct with parallel annulus walls
and uniform axial mean flow (appendix 1). Given the approximations of the method a simply calculated
Mach number based on area average axial velocity and temperature (or equivalent) at each axial plane is
sufficient to define the equivalent mean flow. '
Step 5. Use linear theory to spllt Bessel- Fourler harmonics into upstream and downstream
components.
This step is not always necessary. In particular if the boundary conditions in the CFD calculation are
known to be genuinely non-reflective, and the duct in which the analysis is being performed is fairly
.uniform, ‘then the noise can be assumed to be travelling in a single direction only, and the pressure
information alone is sufficient. In many cases, however, the effect of the boundary conditions and duct
geometry is not known at acoustic wavelengths and frequencies, and this step is required.
Two methods of performing the wavesplit are detailed in appendix 1. The first, simpler method uses just
the pressure and the axial velocity from the CFD solution, and is based on the assumption of irrotational
flow (that is in total, not just irrotational mean flow). This is often a good approximation in the inlet duct.
It is unlikely to be sufficient in the OGV exit duct, or in other calculations where vortical waves are
prominent in the flow solution.. Boundary conditions too (even if termed non-reflective) can introduce
vorticity at the inlet plane.
The second method is still based on the assumption of uniform axial mean flow, but allows for vortical
waves in the solution. This method is more complex, using the divergence of the flowfield to remove the
effects of vorticity. »
Step 6. Calculate acoustic energy flux for upstream and downstream components.
Usually the most useful quantitative output from the analysis method is the noise amplitude (SPL) in the
different circumferential and radial harmonics. Sometimes, however, it is useful to compare the noise
generated in the different harmonics, or to combine the results into a single figure. Tester (1972) gives a
formula (reproduced in appendix 1) for acoustic energy flux based on the same uniform axial flow and
parallel duct assumptions as the theoretical calculations in step 4 and the irrotationality assumption of the
first method in step 5. The calculation can be applied directly to the interpolated flow variables at each
axial plane at step 2, but it can also be applied to the upstream and downstream components of the
individual circumferential and radial harmonics. Under the given assumptions these behave independently
for cut-on modes (that is, the total energy flux is the sum of the constituents). For cut-off modes energy is
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transported by combinations of upstream and downstream propagating waves, and thus the calculation has
to be performed prior to the wavesplit. _

By summing the energy flux over all the modes in one direction only (upstream or downstream), it is
possible to calculate an overall source level in the cut-on modes disregarding any waves reflected from the
boundary of the CFD domain.

Example 2: Unsteady CFD, Boundary Conditions, Dissipation Errors

This example comes from an investigation into non-reflective boundary conditions. Two separate 3D
unsteady linear calculations were performed in a parallel annulus duct with two types of boundary
condition at the inlet (Giles type 1D and 2D non-reflecting, Giles 1990, Saxer and Giles 1993). A uniform
rectangular grid .was used, with 61 points axially and 41 points circumferentially and radially,
representative of a short section of the inlet duct for a typical aeroengine fan at rig-scale (Outer diameter
around 0.43m). The base flow for the linear calculation was set to be uniform axial flow, again
representative of a fan inlet duct at transonic conditions. In each case a 26-lobed upstream travelling
acoustic wave was input at the outflow boundary, and the output analysed using the method described in
the previous section.

Figure 6 shows some of the results from the calculation with 1D non-reflecting boundary conditions. The
input wave had constant amplitude radially. This implies content at all radial harmonics, and so it is
unsurprising that the wall amplitude (solid line in Figure 6) varies considerably along the length of the
duct. The total amplitude of the first radial harmonic (dashed line) also varies, due to reflections from the
inlet boundary. When the wavesplitting process is applied using the static pressure and axial velocity
(dotted line), the long lengthscale oscillations are removed, but more oscillations are present at a shorter
lengthscale.

The oscillations in wave amplitude aré the result of vorticity introduced by the boundary conditions at the
inlet boundary. The reflected vortical waves interfere with the axial velocity field, preventing an accurate
analysis of the acoustic waves. This effect can be removed by applying the wavesplit method using static
pressure and the divergence of the velocity field (see appendix 1). The result of this analysis is shown as
the dash-dot line in Figure 6. All oscillations have been removed, leaving a uniformly decaying amplitude
from which a quantitative estimate can be made of the dissipation error inherent in the numerical
calculation (15dB per duct diameter). Similar calculations could be performed using the phase of
individual waves to determine the propagation phase error.
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Figure 7. Unsteady CFD: Upstream and Downstream Waves

Full results from the wavesplitting procedure at the first and second radial harmonics are presented in
Figure 7. The second harmonic is very close to cut-off (cut-off ratio 1.01), and illustrates some of the
difficulties commonly encountered close to the cut-on/cut-off boundary. The upstream wave shows an
exceptionally fast rate of decay with axial distance, and the downstream wave in particular shows
significant non-linear behaviour, in that the (log) amplitude varies non-linearly with axial distance.

Because information in near cut-off modes travels slowly along the duct there is more time for genuine
non-linear and viscous phenomena to affect noise propagation between axial planes. The present
calculations, however, were performed with an inviscid linear code, and so neither of these factors can
explain the high decay rate of the upstream wave. The decay here is a result of the numerical smoothing
applied in the CFD code.

In a CFD calculation smoothing is balanced by the rate at which the wave information travels upstream.
Hence waves near cut-off tend to be heavily attenuated. The principle can illustrated using a mmphstlc 2D
wave equation solved analytically with second order smoothmg on the pressure term. Using the
nomenclature defined in the appendlx
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The level of smoothing € is assumed to be small and fixed independently of the frequencies and
wavelengths present in the solution. For a cut-on upstream plane wave at a given frequency @ it is
possible to show (with some algebra) that to first order in € the axial wavenumber of the smoothed wave is

A=k +ico’ /’7c U,
where u, , =- c')»/u) is the rate at which information travels upstream, and A is the axial wavenumber in
the absence of smoothing. Thus the rate of decay with axial distance (determined by the imaginary part of
the axial wavenumber) is €@ / 2¢u;,c . Hence waves near the cut-off boundary (u,, — 0) are heavily

attenuated.
In addition to the greater non-linear and smoothing effects, the wavesplitting process itself is liable to
errors close to the cut-on/cut-off boundary. At this boundary the upstream and downstream linear waves
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coalesce. In theory this could give large numerical errors in the wavesplitting solution (mathexﬁatically,
f“and f* get very close in equations 18, 19 of the appendix)”. In practice this is rarely a problem: even

with a cut-off ratio of 1.01 there is sufficient discrimination to prevent large numerical errors.

Of much greater significance is the fact that the discrepancies between the CFD calculated modes and the
analytical modes grow large near the cut-on/cut-off boundary: In the analytic axial mean flow formulation
the axial wavenumber A becomes very sensitive to flow conditions, and in particular to the cut-off ratio

E=m / cH (] - UZ). Indeed, it can be seen from equation 7 of the appendix that at the boundary itself the

derivative of A with respect to & becomes infinite. It is unsurprising therefore that the analytic modes and
those calculated by CFD (with non-uniform mean flow, smoothing and discretisation errors) can be very
different near the boundary.

The following graph illustrates the problems that can occur near the cut-off boundary. The simple case is
taken of a 2D wave equation solved using analytic derivatives in time and axially (x direction), but a
simple central difference numerical derivative in the y direction. Forty points per wavelength were used,
which is usually sufficient to give reasonable wave propagation. An exact modal solution to the numerical
problem was calculated for a range of frequencies, to which the wavesplitting technique was applied. The
graph shows the amplitude of the forward and reverse waves calculated by the method for points close to
the cut-off boundary. As expected, the errors grow large close to the boundary, and very close to the
boundary the calculated waves in both directions can be much larger in amplitude than the genuine wave.
Note, though, that the errors are highly concentrated in the region of the boundary: away from this point
(towards either cut-on or cut-off) the errors are small and the wavesplitting technique is successful.
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Figure 8. Errors in Wavesplitting Method Close to the Cut-Off Boundary

2 With the second wavesplitting method, based on pressure and the divergence of the velocity, numerical
errors could also cause a problem in regions of low or zero mean flow. This is because, although the axial
wavenumbers of the upstream and downstream waves remain discrete with decreasing mean flow, the

wavesplitting parameters f* and f“ (equation 22 of the appendix) become identical.



(8YA) 3-11

Returning to the CFD example, Figure 9 shows the results of the wavesplitting analysis for the 1D and 2D
non-reflective boundary: conditions. The 1D boundary conditions give a reflected wave with amplitude
11.5dB lower than the incident. The second radial harmonic, however, shows a reflection only 3dB lower
than the incident (accepting the errors discussed above in the wavesplitting for this harmonic). Care has to
be applied here, in that boundary conditions can scatter an incident wave at one radial harmonic into
reflected waves at other harmonics. However, a more detailed analysis of the 1D non-reflective boundary
conditions used in this case has shown that the downstream wave at the second radial harmonic is indeed a

reflection of the same harmonic, rather than a scattered reflection from the first harmonic. The 2D non-

reflective boundary conditions give a reflection of the first harmonic 30dB lower than the incident. This
level is-close to the level at which forward and backward waves can be discriminated, hence the oscillation
with axial distance. The second harmonic is reflected at a level 4dB lower than the incident. A more
detailed analysis of the boundary conditions has shown that this value would be 7.6dB without scattering
from the higher amplitude first radial harmonic.

In both cases the high reflection coefficients for the second harmonic mirror the difficulty in wavesphttmg_
close to the cut-off boundary.
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Figure 9. Unsteady CFD: Comparison of 1D and 2D Boundary Conditions

Further Example

The wavesplitting method has been applied to a flat plate wake/vane interaction case (Wilson 2001). In
that work the method was also extendcd to provide fully 3D non- reﬂectmo boundary conditions at inflow
and exit.

Limitations

The major limitations of the analysis procedure have been identified as follows:
1) The method as it stands is unsuitable for use in regions where the propagating modes are known to
differ strongly from Tyler and Sofrin modes. Examples are:
a) Fan exit, where the high degree of swirl significantly affects the propagating modes.
b) Lined ducts (although the method can still be applied in any hardwall regions upstream and
downstream of the liner).
2) The method gives poor results close to the cut-on/cut-off boundary (as discussed under example 2).
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3) The wavesplitting method based on pressure and axial velocity is limited to regions of irrotational
flow. This can be a good approximation in the fan inlet region, subject to the boundary conditions at
the inlet plane producing negligible vorticity. This limitation can be overcome by using the second
wavesplitting method, based on pressure and the divergence of the velocity.

Summary

A procedure has been developed for deriving tone noise information from CFD solutions in the fan stage.
A wavesplitting method is used at a number of axial locations upstream of the fan to derive upstream and
downstream wave information from the CFD calculated flowfield. The development of these waves with
axial distance is then compared to well-understood linear behaviour.

The method is equally applicable to the bypass duct downstream of the outlet guide vane (where, like the
inlet, the mean flow is approximately axial). Application to other areas is subject to the limitations
outlined in the previous section.

Examples have been given of how the method can be used

e to identify regions of non-linear behaviour

e to identify and eliminate the effect of modest spurious reflections at the domain boundanec

* to identify and eliminate the effect of modest vortical waves present in the solution

e to quantify numerical dissipation errors

and hence

e to quantify tone noise generation.
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Appendix 1 — Mathematics of Wavesplitting Technique

- Nomenclature

Mean flow speed (assumed axial) normalised by speed of sound
Mean flow pressure

Mean flow density :

Speed of sound based on mean flow pressure and density
Perturbation velocity normalised by speed of sound
Perturbation pressure, normalised by Y

Ratio of specific heats (assumed constant)

=T =0 oo

Wave Solutions of the Euler Equations in Parallel Annulus Ducts

The linearised Euler equations for a perfect gas with constant ratio of specific heats and uniform mean
flow in the x direction can be expressed as

1du _ du - ' ' '

— =ty ==-V (1)
cat+ ox P :

1dp ap ' .
— __:..V'

¢ or +U8x " ' (2)

Together with the equation of state and the energy equation this represents five equations in five
unknowns. The wave solutions (that is, solutions for the flow variables that preserve their shape axially)
are well known, and correspond to two acoustic waves, two vorticity waves and a single entropy wave.

For a parallel wall annular duct the acoustic waves can be written as

u=Vo ' o (3)
= ip/(@/c~UL) (4)
where p=p, . expi(odt —Ax—m8 )BX(r) | v (5)

and BY (r) is a combination of the J- and Y-type Bessel functions:
BL(r)=al,(uir)+ b, (uir). (6)

: o0
where a, b and W2 are chosen to satisfy the boundary condition u, = —a' =0 on both the inner and outer
r

walls. If-no routine is available to give these functions, a method is outlined later Wthh requires only
evaluation of the individual Bessel functions.

For each circumferential harmonic m and radial harmonic k there are two possible axial wavenumbers A
defined by

2 L2 2 '

lz—Um/ciJ(m/c)-un, t-v?) 7
1-U? :

A is either real or complex depending on the sign of the term under the square root. It is convenient to

consider the two cases separately:

Cut-on waves (A real)
It can be seen from equation 5 that if A is real, then the wave propagates axially at constant amplitude and
varying phase. For forward subsonic mean flow 0 < U < 1, the negative root in equation 7 corresponds to
an upstream travelling wave, whilst the positive root corresponds to a downstream wave. Note that with
mean flow U > 0 it is possible for A to remain negative even for the downstream travelling wave. In this
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case the wavefront is angled in the same direction as the upstream wave and indeed appears to move
upstream. The group velocity, however, defining the direction in which information is transported, is still
downstream, as is the transport of energy.

Cut-off waves (A complex)

If A is complex, then the wave decays exponentially in the direction of propagation. For forward subsonic
mean flow 0 < U < 1, the root of equation 7 with positive imaginary part represents an upstream wave
decaying with upstream distance, and the root with negative imaginary part represents a downstream wave
decaying with downstream distance. The phase variation is fixed by the first term in equation 7, which is
independent of m and k. Hence all cut-off waves have the same ‘spiral angle’ (that is, the same rate of
change of phase with axial distance).

In each case, the two roots of equation 7 correspond to one upstream and one downstream wave. Entropy
and vorticity waves make no contribution to the pressure, and so at a given frequency @, circumferential
mode m and radial harmonic £, the entire unsteady pressure field can be written as the sum of the
contributions from the two acoustic waves:

p=lp" ()¢ p* (lexpifer - md L (), where )

4

' = ¢st.expl— A"
p" =cst.expl=iA"x) (9,10)

o

p" = cst.expl—iA"x)
Thus if p** and pds are known at any single axial plane, then their (theoretical) values can be calculated at

any other plane. Two methods are given below for splitting the unsteady pressure into its upstream and
downstream components, depending on whether or not the flow can be assumed irrotational.

Wavesplitting in Irrotational Flow

The velocity and pressure perturbations of individual acoustic waves are linked by equations 3 and 4.
Entropy waves, furthermore, make no contribution to either pressure or velocity. Hence for each harmonic
(w, m, k) the axial velocity can be derived from the upstream and downstream components of pressure (equ
8) as follows:

u, = lu"' (x)+ 0 (x)lexpi(cor —mB)B: (r), where (11)
lllll\ = fu\pll.f
u;’\ - fd.\'p,]\

fu\' - }\u\‘/(co/c _m'ur) ( 12, 13, 14, 15 )

fll\ — }\.‘I\/(m/(,' _ mzl.\ )
Of more interest is the inverse process, whereby the upstream and downstream components can be

determined from the static pressure and axial velocity. If at a given axial plane and these two variables are
decomposed into Bessel-Fourier harmonics, with coefficients p’, #’, then

p=p“+p*
16, 17
=+ = [ o
Hence
us _ ds 0 ds _ gus
P =(rep ~u )(r* - 1) (18,19)

p* =(r=p —u )(r=-r*)
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Wavesplitting in the Presence of Vortical Waves

In the presence of vortical waves the previous wavesplitting method fails, because the axial velocity isno
longer a function of the acoustic waves alone. Hence another method is presented here, based on pressure
and the divergence of the velocity field (V-u). Note that this method too is based on the assumption of a
uniform axial mean flow. Thus, whilst small amounts of vorticity can be handled using this method, it is
not suitable for highly vortical flows such as those found between an aeroengine fan rotor and outlet guide
vane.

The divergence of the velocity for acoustic waves can be calculated from the two pressure coefficients
(equs 9, 10) using equ 4; ' :

V- -u* =.V2¢‘”' - : .
=t et p ) S (20)
= s o flose - o) |
=f*p" |

where f* =— i(;\.""'2 + u:.z )/((D/C -UA" ) | (21)

With some manipulation, this can be reduced to ‘

£ ==ilofc-vrr), - - (22)

and similarly for the downstream waves.

Both V -uand p are identically zero for vorticity and entropy waves. Hence the upstream and downstream
components can be obtained from V -u and p in an identical manner to the irrotational case (equs 16 to

19), but with V -u instead of u,, and the new definitions of /*, f s

V -ucan be calculated directly from the CFD solution using a simple difference sum. A refinement is to
use the flow equations (1, 2) to remove the axial derivative of the velocity, such that the wavesplit can be
performed using only data from a single axial plane. The following analysis is for isentropic flow,
although the result also holds in the presence of entropy waves.

For isentropic flow, given the normalisation used, the continuity equation (2) can be expressed in terms of
pressure: ' :

ldp /. op 22 gy v v :
2t U==-Vu=-Vu-—=, 23
c ot ox ox ( _)
22 19(ru,)  10u =

here V.u = Lo -8 : 24
where r or rodé . (24)
But from the axial component of the momentum equation (1),
9 _ _1ou, _,;0u, (25)

Substituting this into equ 23, and applying a transform in the time direction —g— — iw,
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ooy, % o Yo%
¢ ¢ ox ox
ou_ 2w ,
=2 [Vu+ZE(p-u)|/1-U?) (26)
ox c ‘
2D 2D G
=>V.u=V.u+aau‘=—(U2V.u+ﬁ(p-Uu,‘A))/(l—U2)
2 S c

Thus to calculate V - u from data at a single axial location, it is necessary only to calculate the radial and
circumferential derivatives in equ 24 and to substitute the result together with values for p and u, into the
equation above. Note that the circumferential derivative is trivial, as the data has previously been Fourier
transformed. In the radial direction a simple finite difference method is often sufficient.

The use of a simple finite difference sum and the inclusion of the analytic flow equations do make the
method somewhat approximate. Nonetheless, provided the vortical waves are of similar amplitude to the
acoustic waves (or smaller) it is effective in isolating the acoustic component, as illustrated by example 2
of the main paper.

Acoustic Energy Flux

Tester (1972) gives an equation for modal energy flux with uniform axial mean flow (based on that of
Cantrell and Hart, 1964). In the current nomenclature, at any given frequency,

O 182 - . ) . b
1 =E-2_m"Re{Pmkumk +M_(pmk pmk +M.3pmluml +umk“mlM.n} (27)

mk

where pp; and u,, represent coefficients of pressure and axial velocity at a single circumferential (m) and
radial (k) harmonic at the given frequency. The term

B}, =B} 2mdr (28) -

has been added to integrate the energy flux over the area of the duct (note that B2, = JB:, (r)*.2nrdr is
purely real in this equation).

If the (m,k) mode is cut-on, then the upstream and downstream travelling waves are orthogonal with
respect to the above equation. That is, the total energy flux in the mode is the sum of that calculated from
just the upstream and downstream travelling components. If the mode is cut-off, then the upstream and
downstream travelling waves interact to give energy flux, and the calculation has to be performed prior to
the wavesplit.

Given the orthogonality of the radial harmonics, the total acoustic energy flux in a given circumferential
harmonic m can also be calculated by integrating the radial profiles directly:

-3 - -
I, = P—;:—JRC{P,..";. +M p.p.+Mlpu, +uu.M, }2nrdr (29)

where p,, and u,, now represent radial profiles of pressure and axial velocity components at the m™
circumferential harmonic. Provided that a single value of M, is used (rather than a radial profile) the result
is equal to the sum of equ 27 over all radial harmonics £.

Calculation of BX(r)

If no routine is available to give these functions, a method is outlined here which requires only values of
the Bessel functions themselves and a method of hunting for zeros.
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The boundary conditions require

k
95, =au:,1;.(u:,r)+' iy, uir)=0 at r=r., ,
o . (30,31,32)
= al, +bY(u )

(l.’ (P'mr’ + me (}‘lmrl )_

This only has non-zero solutions for a, b if

‘];'l "Il'iy"'lolﬂ‘lr") Y G‘I rl)lm(LllM _) (33)

Using the recurrence relationships
2Jr'n(z)= Jm—!(z)_JmH (Z) and 2Y (Z) Y I(Z) mH( ) ( 34a 35 )

this equation can be rewritten

(‘]m I(u'm = J W0 )X Y. IGJ':’Z) m+1(}1 rz)'
(m 1(}‘ ’]) m+|(}1m"1)xjm-t(}1;rz)_~]m+1 ,;,rz))=

Viewing this as a function of M, , the values that are able to satisfy the boundary conditions can thus be

found by hunting for zeros. The ratio b/a can be found by applying the boundary condition (30) at either
the inner or the outer wall. The amplitude and phase of the remaining constant (a or b) is arbitrary. A

convenient practical choice is to set the value at the outer wall to unity, Bk (r,.) =1. In this way, the

coefficient of the pressure represents the value that would be measured by a microphone at the outer wall
in the absence of other radial harmorics.

(36)




